Math 2 NCFE Practice: Quadratics and Solving Equations

(Units 2 and 3)
\qquad 1. Simplify: $8 \sqrt{20}$
A. $16 \sqrt{5}$
B. $32 \sqrt{5}$
C. 160
D. $20 \sqrt{8}$
2. In a direct relation, if y increases, what happens to x ?
A. Increases
B. Decreases
C. Remains constant
D. Not enough information to determine
3. Simplify $(2 x-3)^{2}$.
A. $2 x^{2}-9$
B. $4 x^{2}+9$
C. $2 x^{2}-6 x-9$
D. $4 x^{2}-12 x+9$
4. The equation $2 x^{2}-5 x=-12$ is rewritten in the form of $2(x-p)^{2}+q=0$. What is the value of q ?
A. $\frac{167}{16}$
B. $\frac{71}{8}$
C. $\frac{25}{8}$
D. $\frac{25}{16}$
5. Write $2 x^{3}+0 x^{2}-72 x$ in factored form.
A. $2 x(x+6)(x-6)$
B. $6 x(x-6)(x+2)$
C. $2 x(x-6)(x-6)$
D. $-6 x(x+2)(x+6)$
\qquad 6. Carter is solving this equation by factoring: $10 x^{2}-25 x+15=0$. Which expressions could be one of his correct factors?
A. $x+3$
B. $x-3$
C. $2 x+3$
D. $2 x-3$
7. Which graph displays the function $f(x)=(2 x+3)(x-2)$?
A.

B.

C.

D.

\qquad 8.Which equation has exactly one real solution?
A. $4 x^{2}-12 x-9=0$
B. $4 x^{2}+12 x+9=0$
C. $4 x^{2}-6 x-9=0$
D. $4 x^{2}+6 x+9=0$
9. What are the solutions to the equation, $4 x^{2}=36$?
A. $x=6,-6$
B. $x=2,-2$
C. $x=9,-9$
D. $x=3,-3$
10. Given the quadratic function, $f(x)=2 x^{2}+3 x-2$, what are the zeros?
A. $-\frac{1}{2}, 2$
B. $\frac{1}{2},-2$
C. $\frac{1}{2}, 2$
D. $-\frac{1}{2},-2$
11. The solution to the quadratic equation $2 x^{2}+5 x-1=0$ is:
A. $\frac{5 \pm \sqrt{17}}{4}$
B. $\frac{5 \pm \sqrt{33}}{4}$
C. $\frac{-5 \pm \sqrt{17}}{4}$
D. $\frac{-5 \pm \sqrt{33}}{4}$
12. What are the solutions to the quadratic equation, $y=x^{2}+3 x+3$?
A. $x=\frac{3+\sqrt{3}}{2}$
B. $x=\frac{-3+i \sqrt{3}}{2}$
C. $x=\frac{-3 i+\sqrt{3}}{2}$
D. $x=\frac{3+i \sqrt{3}}{2}$
13. The number of bacteria in a culture can be modeled by the function $N(t)=28 x^{2}-30 x+160$, where t is the temperature, in degrees Celsius, at which the culture is being kept. A scientist wants to have fewer than 200 bacteria in a culture in order to test a medicine effectively. What is the approximate domain of temperatures that will keep the number of bacteria under 200 ?
A. $-1.01^{\circ} \mathrm{C}<t<2.03^{\circ} \mathrm{C}$
B. $-0.90^{\circ} \mathrm{C}<t<1.97^{\circ} \mathrm{C}$
C. $-0.86^{\circ} \mathrm{C}<t<1.93^{\circ} \mathrm{C}$
D. $-0.77^{\circ} \mathrm{C}<t<1.85^{\circ} \mathrm{C}$
14. The graph of $f(x)=x^{2}$ will be translated 5 units up and 2 units to the right. Which function describes the graph produced by the translation?
A. $g(x)=x^{2}-4 x+9$
B. $g(x)=x^{2}+4 x-1$
C. $g(x)=x^{2}-10 x+27$
D. $g(x)=x^{2}+10 x+23$
\qquad 15. The time required to empty a tank varies inversely as the rate (in gallons per minute). If a pump can empty a tank in 3 hours at a rate of $420 \mathrm{gal} / \mathrm{min}$, how long will it take to empty a tank at $500 \mathrm{gal} / \mathrm{min}$?
A. 3.6 hours
B. 4.2 hours
C. 2.52 hours
D. 2.1 hours
16. Solve the equation: $2 \sqrt{x+5}-3=9$
A. $x=4$
B. $x=31$
C. $x=67$
D. $x=139$
\qquad 17. Solve the equation $\frac{x}{2}=\frac{x-3}{5}$
A. $x=-1$
B. $x=1$
C. $x=-2$
D. $x=2$
18. Solve the equation $\sqrt{-5 x+6}=x$
A. $x=1$
B. $x=-2$
C. $x=1$ and 6
D. $x=-2$ and -3
19. The towers of a suspension bridge are 800 feet apart and rise 162 feet higher than the road. Suppose that the cable between the towers has the shape of a parabola and is 2 feet higher than the road at the point halfway between the towers.

What is the approximate height of the cable 120 feet from either tower?
A. 80 feet
B. 74 feet
C. 22 feet
D. 16 feet
20. The amount of time it takes to build a road varies inversely with the number of workers building the road.

Suppose it takes 50 workers 8 months to build the road.

- What is the constant of variation?
- Write an equation that could be used to determine how long it would take n workers to build the road. (Be sure to define the variables.)
- How much faster would 60 workers build the road than 50 workers?

