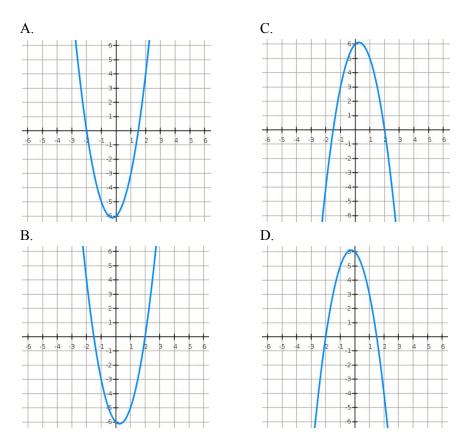
Name:


Math 2 NCFE Practice: Quadratics and Solving Equations (Units 2 and 3)

- 1. Simplify: $8\sqrt{20}$ A. $16\sqrt{5}$ D. $20\sqrt{8}$ B. $32\sqrt{5}$ C. 160 2. In a direct relation, if *y* increases, what happens to *x*? A. Increases B. Decreases C. Remains constant D. Not enough information to determine 3. Simplify $(2x-3)^2$. A. $2x^2 - 9$ B. $4x^2 + 9$ D. $4x^2 - 12x + 9$ C. $2x^2 - 6x - 9$ 4. The equation $2x^2 - 5x = -12$ is rewritten in the form of $2(x - p)^2 + q = 0$. What is the value of q? A. $\frac{167}{16}$ B. $\frac{71}{8}$ C. $\frac{25}{8}$ D. $\frac{25}{16}$ 5. Write $2x^3 + 0x^2 - 72x$ in factored form. A. 2x(x+6)(x-6)C. 2x(x-6)(x-6)
 - 6. Carter is solving this equation by factoring: $10x^2 25x + 15 = 0$. Which expressions could be one of his correct factors?

D. -6x(x+2)(x+6)

- A. x + 3C. 2x + 3B. x 3D. 2x 3
- 7. Which graph displays the function f(x) = (2x + 3)(x 2)?

B. 6x(x-6)(x+2)

- 8. Which equation has exactly one real solution?
 - A. $4x^2 12x 9 = 0$ B. $4x^2 + 12x + 9 = 0$ C. $4x^2 - 6x - 9 = 0$ D. $4x^2 + 6x + 9 = 0$
- 9. What are the solutions to the equation, $4x^2 = 36$? A. x = 6, -6 B. x = 2, -2 C. x = 9, -9 D. x = 3, -3

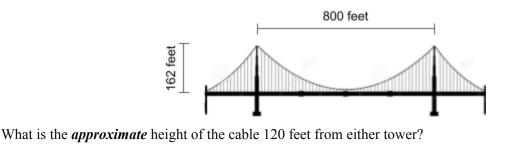
10. Given the quadratic function, $f(x) = 2x^2 + 3x - 2$, what are the zeros? A. $-\frac{1}{2}$, 2 C. $\frac{1}{2}$, 2

- B. $\frac{1}{2}$, -2 D. $-\frac{1}{2}$, -2
- 11. The solution to the quadratic equation $2x^2 + 5x 1 = 0$ is: A. $\frac{5\pm\sqrt{17}}{4}$ B. $\frac{5\pm\sqrt{33}}{4}$ C. $\frac{-5\pm\sqrt{17}}{4}$ D. $\frac{-5\pm\sqrt{33}}{4}$

12. What are the solutions to the quadratic equation, $y = x^2 + 3x + 3$?

A.
$$x = \frac{3\pm\sqrt{3}}{2}$$

B. $x = \frac{-3\pm\sqrt{3}}{2}$
C. $x = \frac{-3i\pm\sqrt{3}}{2}$
D. $x = \frac{3\pmi\sqrt{3}}{2}$


- 13. The number of bacteria in a culture can be modeled by the function $N(t) = 28x^2 30x + 160$, where *t* is the temperature, in degrees Celsius, at which the culture is being kept. A scientist wants to have fewer than 200 bacteria in a culture in order to test a medicine effectively. What is the *approximate* domain of temperatures that will keep the number of bacteria under 200?
 - A. $-1.01^{\circ}C < t < 2.03^{\circ}C$ B. $-0.90^{\circ}C < t < 1.97^{\circ}C$ C. $-0.86^{\circ}C < t < 1.93^{\circ}C$ D. $-0.77^{\circ}C < t < 1.85^{\circ}C$
 - 14. The graph of $f(x) = x^2$ will be translated 5 units up and 2 units to the right. Which function describes the graph produced by the translation?
 - A. $g(x) = x^2 4x + 9$ B. $g(x) = x^2 + 4x - 1$ C. $g(x) = x^2 - 10x + 27$ D. $g(x) = x^2 + 10x + 23$

15. The time required to empty a tank varies inversely as the rate (in gallons per minute). If a pump can empty a tank in 3 hours at a rate of 420 gal/min, how long will it take to empty a tank at 500 gal/min?

	A. 3.6 hours	B. 4.2 hours	C. 2.52 hours	D. 2.1 hours
16. Solve the equation: $2\sqrt{x+5} - 3 = 9$				
	A. $x = 4$	B. <i>x</i> = 31	C. $x = 67$	D. <i>x</i> = 139
17. Solv	the equation $\frac{x}{2} = \frac{x-3}{5}$ A. $x = -1$	B. <i>x</i> = 1	C. <i>x</i> =- 2	D. <i>x</i> = 2
18. Solv	the equation $\sqrt{-5x+6} = x$ A. $x = 1$	B. $x = -2$	C. $x = 1$ and 6	D. $x = -2$ and -3

19. The towers of a suspension bridge are 800 feet apart and rise 162 feet higher than the road. Suppose that the cable between the towers has the shape of a parabola and is 2 feet higher than the road at the point halfway between the towers.

3

A. 80 feet B. 74 feet C. 22 feet D. 16 feet

- 20. The amount of time it takes to build a road varies inversely with the number of workers building the road. Suppose it takes 50 workers 8 months to build the road.
 - What is the constant of variation?
 - Write an equation that could be used to determine how long it would take *n* workers to build the road. (Be sure to define the variables.)
 - How much faster would 60 workers build the road than 50 workers?