\qquad

Math 2 NCFE Practice: Transformations, Graphs, and Probability

1. The graph of $y=x^{2}$ is shifted up 3 units and right 5 units. Which equation represents the resulting graph?
A. $y=(x-5)^{2}+3$
B. $y=(x+5)^{2}+3$
C. $y=(x-3)^{2}+5$
D. $y=(x+3)^{2}+5$
2. Which function matches the graph?

A. $y=\sqrt{x+5}+5$
B. $y=\sqrt{x-5}-5$
C. $y=\sqrt{x+5}-5$
D. $y=\sqrt{x-5}+5$
\qquad 3.Which of the following algebraic rules describes an isometric transformation?
I. $(x, y) \rightarrow(3 x, 3 y-1)$
II. $(x, y) \rightarrow(-x-6,-y+1 / 4)$
III. $(x, y) \rightarrow(-y, x+1)$
A. I and II
B. II and III
C. I and III
D. None on the above
3. Convert the equation, $y=x^{2}+4 x+13$ to vertex form.
A. $y=(x+2)^{2}$
B. $y=(x+2)^{2}+9$
C. $y=(x+4)-3$
D. $y=(x+4)^{2}$
\qquad 5. Which of the following is true for a quadratic function with an imaginary root?
A. A quadratic has an imaginary solution if is it not factorable.
B. A quadratic has an imaginary root if the parabola is upside down.
C. A quadratic has an imaginary root if the parabola "bounces" off of the x-axis.
D. A quadratic has an imaginary root if the parabola does not touch the x-axis.
\qquad 6. Which of the following correctly describes the transformation of triangle ABC ?
A. $(x, y) \rightarrow(x,-y)$
B. $(x, y) \rightarrow(y, x)$
C. $(x, y) \rightarrow(-x, y)$
D. $(x, y) \rightarrow(y,-x)$

\qquad 7. Which equation correctly models the graph shown?
A. $y=\sqrt{x-1}+3$
B. $y=\frac{1}{x-3}+1$
C. $y=(x-1)^{2}+3$
D. $y=\frac{1}{x-1}+3$

\qquad 8. Which of the following functions has asymptotes at $x=5$ and $y=1$?
A. $y=-\frac{1}{x+5}+1$
B. $y=-\frac{1}{x-5}+1$
C. $y=\frac{1}{x+5}+1$
D. $y=\frac{1}{x-5}-1$
\qquad 9. What is the range of the graph on the right?
A. $-\infty \leq y \leq \infty$
B. $-2 \leq y \leq \infty$
C. $-2 \leq y \leq 2$
D. $-2.5 \leq y \leq 2.5$

\qquad 10. Twenty-one students at a school have an allergy to peanuts, shellfish, or both.

- Fourteen students at the school are allergic to peanuts.
- Twelve students at the school are allergic to shellfish.

How many of the students are allergic to both peanuts and shellfish?
A. 12
B. 7
C. 5
D. 2
\qquad 11. Suppose that James can choose to get home from work by taxi or bus.

- When he chooses to get home by taxi, he arrives home after 6 p.m. 8 percent of the time.
- When he chooses to get home by bus, he arrives home after 6 p.m. 15 percent of the time.
- Because the bus is cheaper, he uses the bus 60 percent of the time.

What is the approximate probability that James chose to get home from work by bus, given that he arrived home after 6 p.m.?
A. 0.09
B. 0.14
C. 0.60
D. 0.74
\qquad 12. For a carnival game, a jar contains 20 blue marbles and 80 red marbles.

- Children take turns randomly selecting a marble from the jar.
- If the blue marble is chosen, the child wins a prize.
- After each turn, the marble is replaced.
- Casey has drawn six red marbles in a row.

Which statement is true?
A. If Casey selects another red marble, then 2 of her next 3 picks will be blue marbles because 2 blue marbles are selected for every 8 red marbles selected.
B. The probability that Casey selects a blue marble on the next turn is higher than it was on her last turn because she has chosen so many red marbles in a row.
C. The probability that Casey selects a blue marble on her next turn is the same as it was on the last turn because selections are independent of each other.
D. If Casey draws 4 more times, she will select 2 blue marbles because the probability that a blue marble will be selected is 2 out of every 10 turns.
13. The function $f(x)$ is defined as $f(x)=x^{2}+2 x-4$. The function $g(x)$ is defined as $g(x)=-3 f(x)+2$.

- $\operatorname{Graph} g(x)$ for $-2 \leq x \leq 2$.
- Describe the transformations that take the function $f(x)$ onto $g(x)$.
- Write a new function, $h(x)$, that transforms $g(x)$ back onto $f(x)$.

\qquad 14. Which transformation will carry the rectangle shown below onto itself?

A. a reflection over line m
B. a reflection over line $y=1$
C. a rotation 90° counterclockwise about the origin
D. a rotation 270° counterclockwise about the origin

15. Triangle $E G F$ is graphed below.

Triangle $E G F$ will be rotated 90° counterclockwise around the origin and will then be reflected across the y-axis, producing an image triangle. Which additional transformation will map the image triangle back onto the original triangle?
A. rotation 270° counterclockwise around the origin
B. rotation 180° counterclockwise around the origin
C. reflection across the line $y=-x$
D. reflection across the line $y=x$

